Exercise 17

Let L_{n} denote the left-endpoint sum using n subintervals and let R_{n} denote the corresponding right-endpoint sum. In the following exercises, compute the indicated left and right sums for the given functions on the indicated interval.

$$
L_{4} \text { for } \frac{1}{x^{2}+1} \text { on }[-2,2]
$$

Solution

Since we're using the left-endpoint sum with $n=4$ to approximate the integral of $1 /\left(x^{2}+1\right)$ from -2 to 2 , the sum is taken from 0 to 3 rather than 1 to 4 .

$$
\begin{aligned}
\int_{-2}^{2} \frac{1}{x^{2}+1} d x \approx \sum_{i=0}^{3} \frac{1}{x_{i}^{2}+1} \Delta x & =\sum_{i=0}^{3} \frac{1}{(-2+i \Delta x)^{2}+1} \Delta x \\
& =\sum_{i=0}^{3} \frac{1}{\left[4-4 i \Delta x+i^{2}(\Delta x)^{2}\right]+1} \Delta x \\
& =\sum_{i=0}^{3} \frac{1}{5-4 i \Delta x+i^{2}(\Delta x)^{2}} \Delta x \\
& =\sum_{i=0}^{3} \frac{1}{5-4 i\left[\frac{2-(-2)}{4}\right]+i^{2}\left[\frac{2-(-2)}{4}\right]^{2}}\left[\frac{2-(-2)}{4}\right] \\
& =\sum_{i=0}^{3} \frac{1}{5-4 i(1)+i^{2}(1)^{2}}(1) \\
& =\sum_{i=0}^{3} \frac{1}{5-4 i+i^{2}} \\
& =\frac{1}{5-4(0)+(0)^{2}}+\frac{1}{5-4(1)+(1)^{2}}+\frac{1}{5-4(2)+(2)^{2}}+\frac{1}{5-4(3)+(3)^{2}} \\
& =\frac{1}{5}+\frac{1}{2}+1+\frac{1}{2} \\
& =\frac{11}{5}
\end{aligned}
$$

